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1. Assumptions. By a weak discontinuity we mean a surface on which 
all elgnents characterizing the state of a stream of gas are continuous, 
but their first or higher derivatives undergo discontinuities. We impose 
no limitation whatsoever on the order of magnitude of the discontinuities, 
except that they are finite. 

We suppose the medium in which we study weak discontinuities to be 
ideal, that is, devoid of processes for dissipating energy (no Joule 
losses, which corresponds to infinite conductivity of the medium, and 
absence of internal friction and heat conduction). 'Ihe density p, 
pressure p and entropy per unit mass are assumed to be related by an 
equation of state of the general form p = f(p, s). 

The equations of magnetohydromecbanics for an ideal medium have the 
forrrr (see, for example, Ill 1: 

div II := 0, 2 = rot(v x H), ds 0 z= 
(1.1) 

dv 
P;zi== -grad p- &[H x rol; H], $+diGp.v-0 

where H is the vector intensity of the magnetic field, v the vector velo- 
city, and the symbol d/'& denotes the full derivative with respect to 
time for fixed particles. 

2. Kinematic conditions on a weak discontinuity. bt the 
surface q5( x, y, z, t) = 0 be a surface of weak discontinuity, and let 
the function u(n, y, t, t) be continuous at this surface, but its first 
derivatives suffer discontinuities across it. We then form two functions 

*1 and u2 such that the function u1 coincides with u on one side and the 
function u2 coincides with u on the other side of the survace += 0, with 
the functions u1 and uz determined on both sides of the surface += 0 and 
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continuous at it together with their first derivatives. 

Forming the difference u2 - u1 and differentiating it along +(x, y, z, 

t) = 0, we obtain 

JJere the differentials dx, dy, dz, dt are subject to the single con- 

dition 

(2.2) 

From a comparison of expressions (2.1) and (2.2) it follows that 

Thus the kinematic condition (2.3) at a weak discontinuity consists 

in the fact that giving the discontinuity in one of the first derivatives 

of a function u(x, y, 2, t) across a surface (GCx, y, z, t) is necessary 

and sufficient for determining all the other first derivatives. Thus a 

weak discontinuity in any quantity u(x, y, z, t) cm be characterized by 

a single function p,(n, y, z, t) with 

or 

(2.4 j 

where n is the unit vector normal to the surface +(x, y, z, t> = 0 and N 
is the velocity of propagation of the discontinuity: 

On the basis of (2.4) the following expressions may easily be obtained: 

[rot (v x H)] = n x (L x tl) -: n x (AU x v), [div (p. v)] = p (A” .n) -- hpv, 
(2.5) 

dV 

t I z 
1= -e8bv, [grad pj == &n, [If x rot Tl] .= H x (n x AlI) 

Here 

A, = hx i + hug j + b:,k, 0 :N-v,, I,, =(van) 

where i, j, k are unit vectors in the Cartesian coordinate system x, y, z. 

3. Dynamic conditions on a discontinuity. We obtain dynamical 
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conditions on the discontinuity, or a relation between the quantities Ai, 

by using expression (2.5) and the equations of magnetohydromechanics for 

the differences across the discontinuity. We will have 

(3.1) 

'Ihe last of equations (3.1) is obtained by differentiating the equation 

P= f6, s); and a is the speed of sound. The first of equations (3.1) in- 

dicates that derivatives of the magnetic field intensity along the normal 

to the discontinuity are continuous across the surface of weak discontin- 

uity. 

Expressing A, from the second and fourth of equations (3.1) in the 

form 

lH _: -;H, _1- H; (3.2) 

and substituting into the third equation, allowing also for the sixth of 

equations (3.1), we have 

A, 
( 

b,Y 
0---- ,--b(a2n + b XL (n :< 

ei P 
b))-_&n j- $(l,.b)n = 0 

Mere b=H/2\/rp ). 

Taking the scalar product of equation (3.3) by b, we find 

and we substitute this back into (3.3). Thus a system of equations 

valent to the system (3.1) is 

An.n = 0, A,=-$,+I&, h,8---pph,.n -0 

t3.31 

(3.4) 

equi- 

(3.5) 

a%(1 -f$-) -/- b x(n x b))+ qn:(1 - $:) 

h,e = 0 

The last of equations (3.1) now serves only for the determination of 

%* 
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Equations (3.1) were obtained under the assumption that the first de- 

rivatives are discontinuous. Ekrt a case may arise where higher derivatives 

suffer discontinuities. Thus, we assune as an example that all elements 

of the stream and their first derivatives are continuous, but the second 

derivatives are discontinuous across the surface +(n, y, z, t) = 0. Diffe- 

rentiating (with respect to x, for example) all the equations of magneto- 

hydrcunechanics, and forming their differences across the surfaGe of dis- 

continuity, we obtain a system of equations for the quantities 3i just 

line (3.11, where the quantities A,, A,, A,, and so on are now Introduced 

according to the following relations 

The situation is similar for discontinuous derivatives of any order. 

'Ihe present reasoning displays the fundamental role of system (3.1) or 

system (3.5) in magnetohydromechanics. 

The system of equations (3.5) is a linear homogeneous system of eighth 

order with respect to the quantities Xi. Consequently, Xi different *from 
zero exist only in the case when the determinant of the system (3.5) 

vanishes. This last condition determines the value 8 of the speed of pro- 

pagation of the discontinuity with respect to the particles of gas. 

Calculating the determinant of system (3.5) and equating it to zero, 

we obtain 

e2p2 - bn2) p4 - e2 (a” + b2) + u2tln2] = 0 (3.6) 

According to the character of the dependence of 0 on the elements of 

the gas stream, and adopting the terminology for a plane wave of infinite- 

simally small amplitude in the stream v = constI, H = const2, weak dis- 

continuities in magnetohydromechanics can be classified in the following 

way: 

magnetohydrodynamic discontinuity: 

82 = b,2 
magnetoacoustic discontinuity: 

84 - eya2 + 62) + a262, = 0 

(3.7) 

(3.8) 

entropy discontinuity: 

e=o (3.9) 
4. Magnetohydrodynamic discontinuity. In this case the speed of 

propagation 8 = + b,. Choosing as the x axis the direction of the vector 

n, and as the x, y plane the plane containing the vectors n andH, on the 
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and fifth equathtns of system (3.5) we have 

&I* = f&AI, , h, = 0 (4.1) 

From the remaining equations of system (3.5) it follows that when 
vectors n and H are not parallel: 

Xb=X,.n=a,.H=Xu.n=X*.H=O (4.2) 

However, if vectors n and !i are parallel, and moreover a* = b*, then 

on the basis of (3.4) A, l n = 0, but Xv l n is arbitrary, and generally 
speaking it is different from zero and A, (here the z axis can be taken 

in any direction perpendicular to n). 

We now consider steady flow. Owing to the fact that inlthis case the 

discontinuity surface is stationary, 8 = - TV,,; consequently 

iv-&-b).n = 0 (4.3) 

The expression (4.3) can be considered as the equation for possible 
positions of a surface of weak discontinuity at a given point. 

Ckr the basis of (4.3) it is evident that in the steady case a magneto- 

hydrod~~ic discontinuity surface is oriented so that its normal is 

orthogonal either to the vector v + I# /2 47 or to the vector v - R / 

26% 

5. Magnetoacoustic discontinuity. For the functions Xi, on the 
basis of (3.5), we obtain the following relations 

We first consider the unsteady case, regarding n as a given quantity. 

Solving equation (3.8) with respect to 8’, we obtain 

ze,,ps = (a2 + b2) -+ j&” + @)a - 4u“%,2 

An obvious consequence is the estimates 

(5.2) 

max (~9, b*) \< fLLa < a2 + b2, 0 < Bp2 < min (a2, P) (5:3) 

Here max(a2, b2) and min(a2, b2) indicate quantities which are the 
maximum and minimum among the values of o2 and b2. We choose the direction 

of the velocity v as the LX axis, the plane of the vectors v and H as the 

n, y plane; then equation (3.8) can be rewritten as 
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V414 -v~~~(u~ + b2) + a2b2(cos yl + sin ym)" = 0 (5.4) 

Here 1 = cash, x), m = co.&, y), and y denotes the angle between the 
directions of v and H. Solving equation (5.4) with respect to m, we obtain 

m=-- & (cos y & 2 vaa + b2 - v212) (5.5) 

Expression (5.5) can be considered as an equation for the determina- 

tion of possible elements of a surface of weak discontinuity. lhe total- 

ity of these elements lie on planes tangent to a certain conical surface 

with vertex at the point in question. &I the basis of (5.3) and (5.5) it 

follows that the condition 

v2 = a2 + b2 (5.6) 

is sufficient for the conical surface under consideration to exist. Esti- 

mates (5.3) show that, generally speaking, the conical surface for the 

case of supersonic flow consists of two concentric surfaces: one located 

outside the Mach cone (v*Z* = a*> and inside the circular cone v*Z* = 

a2 + b*, and the other situated inside the Mach cone. 

In the special case when vectors v and H are parallel, the first sur- 

face is the circular cone v*l* = ca* + b* - a*b*/v*, and the second de- 

generates to the straight line 1 ='O. 'Ibe condition for the existence of 

a surface of weak discontinuity in this case is obviously 

or 
0<12<1 

either- va> a2, b2<v2 

or v2<a2, 
liW 

v2 < b= < - 
G-l? 

or vs = 9, P-arbitrary (5.7) 

6. btropy discontinuity. For an entropy discontinuity 8 = 0, 

that is, it moves with the gas particles, and in steady flow coincides 

with a strean surface. From the fourth equation of the system (3.1) it 

follows that A, - n = 0, and then on the basis of the second of equations 

(3.1) 
A,H,=O (6.1) 

If H,, f 0, then A, = 0, and fran the third equation of system (3.1) it 

follows that A, = A, = 0, but then 

If H, = 0, then 

h, = - (q/a”) A, (6.2) 
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A, = - &-H, An-II = 0, A,.n = 0. 

Thus in the last case (ff,, = 01, a derivative formed from the velocity 

and magnetic field intensity may suffer a discontinuity in a surface 

tangent to the surface of discontinuity. 
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