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1. Assumptions. By a weak discontinuity we mean a surface on which
all elements characterizing the state of a stream of gas are continuous,
but their first or higher derivatives undergo discontinuities. We impose
no limitation whatsoever on the order of magnitude of the discontinuities,
except that they are finite.

We suppose the medium in which we study weak discontinuities to be
ideal, that is, devoid of processes for dissipating energy (no Joule
losses, which corresponds to infinite conductivity of the medium, and
absence of internal friction and heat conduction). The density p,
pressure p and entropy per unit mass are assumed to be related by an
equation of state of the general form p = f(p, s).

The equations of magnetohydromechanics for an ideal medium have the
form (see, for example, [1]):

s : 2 aH i ds
div H:=0, 5 = rot (v x H), =0
(1.1)
P%z“gfﬂdp—;f,—tlﬂxrotﬂl, g—j+divp.v:0

where H is the vector intensity of the magnetic field, v the vector velo-
city, and the symbol d/dt denotes the full derivative with respect to
time for fixed particles.

2. Kinematic conditions on a weak discontinuity. let the
surface ¢ (x, y, z, t) = 0 be a surface of weak discontinuity, and let
the function u(x, y, z, t) be continuous at this surface, but its first
derivatives suffer discontinuities across it. We then form two functions
uy and u, such that the function u, coincides with u on one side and the
function u, coincides with u on the other side of the survace ¢= 0, with
the functions u, and u, determined on both sides of the surface ¢ = 0 and
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continuous at it together with their first derivatives.

Forming the difference u, ~ u, and differentiating it along &(x, y, z,
t) = 0, we obtain

Here the differentials dx, dy, dz, dt are subject to the single con-
dition
79 99 'y 99 ¢
5, 4 ~~]-0—ydy +o.de+ S2dt =0 (2.2)

From a comparison of expressions (2.1) and (2.2) it follows that

[ﬁu}.&g _ [Ou}.?@ . [d])? . [aﬁ];?ﬁ — (2, Y 2, 0) (2.3)

Gl de = oyl oy T FE) e T la) w

Thus the kinematic condition (2.3) at a weak discontinuity consists
in the fact that giving the discontinuity in one of the first derivatives
of a function ulx, y, z, t) across a surface ¢(x, y, z, t) is necessary
and sufficient for determining all the other first derivatives. Thus a
weak discontinuity in any quantity ulx, y, z, t) can be characterized by
a single function p (x, y, 2z, t) with

dul]  O9 dul  de
= R R T R
or
du N ou : .
[(—’;] = Aylly, [5{] B ""')\ul\ (2/1)

where n is the unit vector normal to the surface ¢z, y, z, t}) = 0 and N
is the velocity of propagation of the discontinuity:

-] VT

On the basis of (2.4) the following expressions may easily be obtained:

[rot (v Xx H)] =n X (Ay X H) —n X (A X v), [div(p-V)] = p(Av +n) — Aot
(2.5)

[%] = —0hy, [grad p]==3n, [II X rot I} =H % (n X Ay)

Here
Ay = )‘vxi + )‘vyj + )‘7:zk7 0 =N —wy, op = (v-.m)
where i, j, k are unit vectors in the Cartesian coordinate system x, y, z.

3. Dynamic conditions on a discontinuity. We obtain dynamical
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conditions on the discontinuity, or a relation between the quantities A,
by using expression (2.5) and the equations of magnetohydromechanics for
the differences across the discontinuity. We will have

Apen = 0 lne 41 X (Ay X H) = 0
Ay 0—— Aot — 7 H> (n <Ay =0
(3.1)
A8 —p(dy-n) =0 _of o
MO =0, dpo=aho +ghs (“ “a 9 us)

The last of equations (3.1) is obtained by differentiating the equation
p= flp, s); and a is the speed of sound. The first of equations (3.1) in-
dicates that derivatives of the magnetic field intensity along the normal
to the discontinuity are continuous across the surface of weak discontin-
uity.

Expressing A, from the second and fourth of equations (3.1) in the
form

;‘H :::—%Hn"‘{"H)-\; (3'2)

and substituting into the third equation, allowing also for the sixth of
equations (3.1), we have

).v(e—%-}— Ze(a'n b (n < b)) —Ln 4. bn m(h-b)n=0  (3.3)

(Here b=H /2y mp).
Taking the scalar product of equation (3.3) by b, we find

a?,h,  gb, 3 4
xv.b:-_é——p—+T? (’)

and we substitute this back into (3.3). Thus a system of equations equi-
valent to the system (3.1) is

A by
l"'n:O, )‘H:—GVH”+H§’ Mﬁ——plv-n:o

(3.5)
bn2 Ao by’ A/ b‘n2
A (0—5) = 2(an (0 =) +bx@x b))+ gn {1 — %)
A8 =0
The last of equations (3.1) now serves only for the determination of

A,
P
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Equations (3.1) were obtained under the assumption that the first de-
rivatives are discontinuous. But a case may arise where higher derivatives
suffer discontinuities. Thus, we assume as an example that all elements
of the stream and their first derivatives are continuous, but the second
derivatives are discontinuous across the surface ¢(x, y, z, t) = 0. Diffe-
rentiating (with respect to x, for example) all the equations of magneto-
hydromechanics, and forming their differences across the surface of dis-
continuity, we obtain a system of equations for the quantities A just
line (3.1), where the quantities Ayr Ay )\p and so on are now introduced
according to the following relations

() =re (2] =twnre [S(2)] = romy neen

The situation is similar for discontinuous derivatives of any order.
The present reasoning displays the fundamental role of system (3.1) or
system (3.5) in magnetohydromechanics.

The system of equations (3.5) is a linear homogeneous system of eighth
order with respect to the quantities )\i. Consequently, A, different from
zero exist only in the case when the determinant of the system (3.5)
vanishes., This last condition determines the value § of the speed of pro-
pagation of the discontinuity with respect to the particles of gas,

Calculating the determinant of system (3.5) and equating it to zero,
we obtain

02(62 — by,2) [6° — 62 (a® + b?) + ah,°] = 0 (3.6)

According to the character of the dependence of 6 on the elements of
the gas stream, and adopting the terminology for a plane wave of infinite-
simally small amplitude in the stream v = const,, H- const,, weak dis-
continuities in magnetohydromechanics can be classified in the following
way:

magnetohydrodynamic discontinuity:

62 = by," (3.7
magnetoacoustic discontinuity:
64 — 62(a? + b2) + a2b, = 0 (3.8)
entropy discontinuity:
=10 (3.9)

4. Magnetohydrodynamic discontinuity. In this case the speed of
propagation 6 = * b . Choosing as the x axis the direction of the vector
n, and as the x, y plane the plane containing the vectors n and H, on the
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basis of the second and fifth equatfons of system (3.5) we have

)\vz = ?bn)‘!{z [} )\s =0 (41)

From the remaining equations of system (3.5) it follows that when
vectors n and H are not parallel:

A =Arn=3AyH=A5n=2g-H=0 (4.2)

However, if vectors n and H are parallel, and moreover a? = b?, then
on the basis of (3.4) Ay - m =0, but A_ - n is arbitrary, and generally
speaking it is dlfferent from zero and )\ (here the z axis can be taken
in any direction perpendicular to n),

We now consider steady flow. Owing to the fact that inithis case the
discontinuity surface is stationary, € = — v ; consequently

(vdb)n=20 (4.3)

The expression (4.3) can be considered as the equation for possible
positions of a surface of weak discontinuity at a given point,

On the basis of (4.3) it is evident that in the steady case a magneto-
hydrodynamic discontinuity surface is oriented so that its nommal is
orthogonal either to the vector v+ H /2 V7 p or to the vector v - H /

2VTmp.

5. Magnetoacoustic discontinuity. For the functions A, on the
basis of (3.5), we obtain the following relations

2 6b b

(5.1)

& et E:bx(nxb‘ L
lp::a")\p, l[{———zy‘ﬂp(b*' 32 —6“‘ )

We first consider the unsteady case, regarding n as a given quantity.
Solving equation (3.8) with respect to 82, we obtain

20, 6% = (a® -+ b)) + V (a® + b%)? — 4a%h,® (5.2)
An obvious consequence is the estimates
max (a?, %) < 0.% a4 b2, 0 < 0g% < min (a2, b?) (5.3)

Here max(a?, b2) and min(a?, b2) indicate quantities which are the
maximum and minimum among the values of a? and b2, We choose the direction
of the velocity v as the x axis, the plane of the vectors v and H as the

y plane; then equation {3.8) can be rewritten as



112 V.N. Zhigulev

vt — v2 (a® + b%) + a?b? (cos yl + sin ym)® =0 (5.4)

Here ! = cos(n, x), m = cos(n, y), and y denotes the angle between the
directions of v and H. Solving equation (5.4) with respect to m, we obtain

L (cosy k2 VAT F— o) (5.5)

sin v

m= —

Expression (5.5) can be considered as an equation for the determina-
tion of possible elements of a surface of weak discontinuity. The total-
ity of these elements lie on planes tangent to a certain conical surface
with vertex at the point in question. On the basis of (5.3) and (5.5) it
follows that the condition

0?2 = g + b (5.6)

is sufficient for the conical surface under consideration to exist. Esti-
mates (5.3) show that, generally speaking, the conical surface for the
case of supersonic flow consists of two concentric surfaces: one located
outside the Mach cone (v212 = ¢?) and inside the circular cone v21? =

a? + b2, and the other situated inside the Mach cone.

In the special case when vectors v and H are parallel, the first sur-
face is the circular cone v212 = a? + b2 - a?b?/v?, and the second de-
generates to the straight line I = 0. The condition for the existence of
a surface of weak discontinuity in this case is obviously

021

or
either u‘3>a2, b2

2 2 2 2 a*s?
or v, P bPs—
or v® = a2, b2—arbitrary (5.7)

6. Entropy discontinuity. For an entropy discontinuity 6 = 0,
that is, it moves with the gas particles, and in steady flow coincides
with a stream surface. From the fourth equation of the system (3.1) it
follows thdt )tv - n =0, and then on the basis of the second of equations
(3.1)

AH,=0 (6.1)

If H # 0, thenA = 0, and from the third equation of system (3.1) 1t
follows that Ay = A= 0, but then

N, = — (g/a?) N, (6.2)
If H = 0, then
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)‘z’:_z}?l"'ﬂ’ Agen=0, Ay-n=0.
_— (6.3)
Pt T

Thus in the last case (H = 0), a derivative formed from the velocity
and magnetic field intensity may suffer a discontinuity in a surface
tangent to the surface of discontinuity.
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